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This report contains work performed a t  Convair during the second quarterly 

period of the study "Evaluation and Application of Data Frau LQW Gravity 

Orbital Experiment." 

work i n  the  areas of repressurization, thermal energy evaluation, tank 

pressure rise, liquid level rise,  and dynamics of sloshing. 

This report contains a discussion of analytical  

Valid modeling of the repressurization period of f l ight  involves 

specifying of several variables. 

input thermodynamic s ta te ,  the  thermodynamic interactions of the re- 

circulstion flow, and the  tank wall thermal energy Input. 

bles are being investigated; some difficulty has occurred in the thermal 

modeling of the S-nrS forward bulkhead area. 

These include a time-dependent helium 

These varia- 

The evaluation of the pressure r i s e  during the fourth orbit  closed 

tank experiment has also been complicated by diff icul ty  i n  defining the 

thermal energy input through the forward bulkhead. Present cmparisons 

indicate current thermal modeling is grossly under predicting t h i s  area 

of energy input. Forward dome absorptivities are being analyzed as are 

the effects of thermal conductivity variation. 

dynamic program predicting pressure rise rate have bracketed the f l ight  

results, however the ullage energy input simulation i s  s t i l l  sub3ect t o  

que6 t ion. 

Results with the thermo- 

A mathematical formulation has been developed t o  evaluate the change 

in liquid level height during a rapid vent down. A discussion is given 

xi 



of the previoua models f o r  t h i s  event and the i r  shortcmngs. 

tributions fran saturated boillag caused by a change i n  saturation 

pressure, wall heat transfer during the blowdown, and the occurrence 

of liquid superheat are analyzed for the  magnitude of t he i r  effect on 

liquid level rise. 

be negligible for the As1203 case. 

times i s  discussed and parametric data i s  presented. 

The con- 

The lat ter two contributions are shown t o  n o m l l y  

The significance of bubble retention 

The application of the pendulum analogy f o r  slosh almulation of 

model drop tower t e s t s  is discussed. 

for  the 6-inch scale m o d e l  As1203 tank. 

and acceleration will be used t o  detennine correlations for  amplification 

factor, effective propellant damping, and slosh period with Bond nmber 

and Fraude number. 

the scale testa w i l l  provide insight into full scale simulation. 

damping with high amplitude sloshing may present simulation diff icul t ies .  

The parameters have been defined 

Data on slosh amplitude, velocity, 

These correlations fiam the  analytical  m o d e l  with 

Baffle 
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The S-IVB stage was launched into a naminal100 mile circular earth orbit 

on 5 July 1966. 

thermodynamic and f lu id  dymmic performance of any orbi ta l  experiment 

performed t o  date. 

models available are  being verified t o  determine applicability and degree 

of correlation. 

canpared with analytical models. 

This fl ight (AS-203) provided the most complete data on 

With the data from that  experiment, the analytical 

Data fran drop tower te s t s  are  also being evaluated and 

Previous presentations of the AS203 experimental data have been 

made (Ref. 4 and 5 ) .  

t o  be represeurization, pressure rise during coast, liquid level r i s e  

bubble dynamics and liquid carryover, and sloshing and sett l ing.  

this study, data presented in those reports will be evaluated in con- 

junction with the analytical models available. 

data will be compared with analytical predictions. Where models show 

good correlation with test data, parametric studies w i l l  be performed 

t o  define the range of operating conditions. 

Particular areas of interest  have been determined 

During 

Where possible, t e s t  

In order t o  design Future upper stage vehicles and extend the 

operating conditions, i.e. coast times, of present vehicles, it i s  

necessary t o  confirm the analytical models available. 

ftmther a i m  of t h i s  s t d y  t o  define areas in which more data is re- 

quired, either through analytical developent or additional experiments. 

It is the 





2. O/TXXNICAL DISCUSSION 

Analytical investigations have been conducted in four major areas during 

th i s  quarterly period. 

repressurization are being evaluated using available cmputer models. 

The pressure rise rate during t h e  fourth orbit has been predicted. 

of t h e  above studies uae the same methods for  evaluation of thermal energy 

input t o  the  tank. 

pressure history prediction, the particular detai ls  of t h e  models are 

indicated in t h e  following discussion. 

presented. 

models 0n.a drop tower model tank is presented. 

2.1 R-IZATION FOR AS-203 

As discussed i n  Reference 1 two tools are being applied t o  the repressur- 

ization problem. 

corporating thermal evaluation results of t h e  Convair Space Vehicle Radiant 

Ehergy Program and the Convair Variable Boundary I1 Heat Conduction Program. 

The Convair Space Vehicle Radiant Euergy Program was run for t h e  

The propellant thennodynamic conditions during 

Both 

The above studies use different F i r s t  I a w m o d e l s  for 

A model for  liquid level rise is 

In  the  slosh analysis area, t he  use of available cmputer 

One method uses the S-I1 Pressurization Program in- 

l a t t e r  portion of the first orbit  and for  the  i n i t i a l  portion of t h e  

second orbit  while repressurization occurs. Orbital incident heating rates 

for  t he  forward cone, dry sidewall and we t  sidewall were obtained from t h i s  

program. These heating rates were input into t h e  Convair Variable Boundary 

I1 Heat Conduction Program t o  obtain the heat flux absorbed by the tank 

fluid.  

indicated in previous AS-203 flight data evaluation reports, several cases 

were run in order t o  simulate the experimental results. 

Because of t h e  discrepancy between predicted and actual heat flux 

Figure 2-1 gives 

3 



a canparison of heat flux t o  the sidewall of the tank with a dry poly- 

urethane foam insulation and with the same ineulation impregnated with 

liquid hydrogen. 

due t o  the different insulation concepts evaluated, the flux t o  the ul lag.  

thru the sidewall and thru the forward dane (not shown) do not vary much 

within the range of ineulation thermal conductivity and specific heat 

considered. 

gated (Sec. 2.2). 

upon ullage heating r a t e  it i e  considered that runs ahould be made using 

the dry foam properties i n i t i a l ly  and then i f  good correlation is not 

obtained, investigate the case of GH2 or GHe impregnated insulation t o  

determine the effect of these property chmgee. Baaed on these results 

the 8-11 Preeeuriestion Program waa inpr t  and effort is currently being 

made t o  run th ie  for a case with no recirculation. 

then be added t o  deternine the effect of t h i e  flow on the pressure hietory 

during repressurization. 

Although the heat fluxee t o  the liquid vary significantly 

This effect of thermal conductivity is being further investi- 

Bince the pressure r i s e  ra te  is much more dependent 

Recirculation w i l l  

The other model being used is an analytical cwputer model, Convair 

P3995, which ha8 been modified t o  include the effects of fuel recircu- 

lation. 

through thick mlle of two different types of materiale and t o  allow the 

input of helium flow r a t e  and temperature as a f b c t i o n  of time. The tank 

geanetry of the S-m was input in to  the  block data section of t he  program 

and the program was canpiled on the CDC 6400. 

case is currently being run. 

Also modifications were made t o  handle transient heat transfer 

The S-IVB repressurization 

4 
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2.2 CLOSED TANK FUSE 

The thennodynamic performance of the hydrogen tank of the -203 vehicle 

was analyzed for t he  fourth orbit, 17140 seconds t o  22,800 seconds range 

time. 

l 7 , l h  seconds, the tank was locked up for the above period. 

After t h e  blowdm t o  saturated conditions of 12.5 psia prior t o  

Major 

interest  lies in the capability t o  predict the pressure r i s e  ra te  over 

t h i s  time period and t o  further define the contributions of heat flux 

causing th i s  pressure rise rate. The method of evaluating these heating 

rates was described in the f i r s t  quarterly progress report (Ref. 1). 

The megnitude of incident heat fluxes determined frau the Space Vehicle 
+ 

Radiant lhergy Program was presented in that report. 

During t h i s  reporting period, significant emphasis has been placed 

on the calculation of the energy absorbed by t h e  ullage and by the liquid. 

In particular, energy transmitted through the forward dwe area has proven 

t o  be diff icul t  t o  analyze. This significant parameter w i l l  require 

further evaluation before conclusive results can be obtained on the pres- 

sure r i s e  rate. The Convair Variable Boundary I1 Heat Conduction Program 

(Ref. 2) is being used in the ullage absorbed energy analysis, while some 

pressure r i s e  evaluations have been made with the Residual Propellant 

Orbital Thermodynamic (RK#IR"l) Program ( R e f .  3 ) developed uner mAs8- 

20165. 

2.2.1 T B W L  AHAISSIS. As indicated in the first quarterly report, for 

purposes of heat transfer analysis, the SIIVB fuel  tank was divided i n t o  

quadrants and into three axial  sections, a t  ETA 555 where the forward 

bulkhead ends and a t  STA 445 near the nominal w e t t e d  l i q u i d  level du r i ag  

fourth orbit, a t o t a l  of twelve sections. L i t t l e  d i f f icul ty  occurred in 
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the analysis of- the lower two sections; however the forward dome area has 

presented sane unusual analytical problems. 

The energy input t o  t h i s  forward bulkhead area is by radiation frw 

the  forward shroud cylindrical and conical sections. 

forward bulkhead was covered with three layers of aluminized mylar with an 

aluminized side out having an absorptivity of 0.05, 

were aut, the appropriate absorptivity may havebeen as high as 0.55. hviron- 

mental conditions during the period prior t o  lift-off may also have resulted 

i n  deterioration of t he  f irst  value t o  a significantly higher value. 

temperature differences i n  the forward w a l l  and the magnitude of predicted 

fluxes, it will be shown t o  be highly probable that the absorptivity was 

considerably above 0.05 although possibly not a s  high as 0.55. Although 

Douglas indicates the 

If the  mylar side 

Through 

two or  three layers of aluminized Wla r  may have been used, the outer surface 

absorptivity i s  controlling and the inner layers only tend t o  m o d i *  the 

effective k of the insulation, which i s  not considered t o  be a significant 

variable i n  ullage heating. 

An excellent method t o  be used i n  checking the adequacy of propellant 

tank thermodynamic modeling techniques i s  t o  compare the temperature differ- 

ence measured across the tank wall withthat predicted fran the computer 

simulation. 

Data obtained for the fuel tank forward bulkhead are  used for t h i s  

modeling correlation. 

and outside surfaces of the bulkhead wall along f i n  l i nes  I and I11 a t  

Station 652.7 are sham on Figure 2-2. 

obtained frw temperature sensors C85 and C 2 8  ( f in  l ine  I) and C86 and 

C329 (fin line 111) on the AS-203 orbi ta l  vehicle, 

The difference i n  temperature between the inside 

The temperature differences were 

7 
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The forward bulkhead was thermally modeled by dividing the daue into 

quadrants along the f i n  l ines and into four thickness nodes in each quadrant. 

To determine the t h e m 1  energy transferred t o  the dame fran i ts  external 

environment, radiation v i m  factors were calculated between t he  daue quadrants 

and the quadrant sections of both the cylindrical lnafxvmentation unit and 

forward interstage adapter and the conical noae fairing. A t i m e  dependent 

energy balance was taken on the  cylindrical and conical sections and the 

energy input t o  the bulkhead calculated by performing a simultaneous energy 

balance on the  dame i t s e l f .  

bulkhead was radiative while f ree  convection was assumed t o  govern the  

transfer of energy away fran the inner dane surface t o  the gaseous pro- 

pellant sink for the closed tank calculation. 

calculations, the  vehicle acceleration level was varied from 1.05 x 

ft/sec2 a t  tank lock-up t o  2.35 x 

cammunication. 

data. 

The bounding heat flu on the outside of the  

For the free convection 

ft/sec2 a t  the t i m e  of f i n a l  loss of 

These inputs were obtained from AS-203 fl ight acceleration 

The proper modeling of the bulkhead thermal energy balance is dependent 

t o  a very large part on the  use of the correct value of outside surface 

thermal absorptivity. 

two  extreme values for  the surface absorptivity are  possible. 

installation of the mylar sheet, aluminized side out, and no degradation 

of t h e  reflectivity of the  vapor deposited aluminum t h e  absorptivity i s  

approximately 0.05. 

the  absorptivity of the mylar surface is approximately 0.55. 

possibil i ty exists; that is the sheet i s  installed properly, but t h e  re- 

f lec t iv i ty  of the  aluminum surface has been degraded by weathering. 

Since the  dane was covered with aluminized q l a r ,  

With proper 

With the sheet installed with the aluminized side in, 

Another 

In 

9 
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t h i s  case, it is not entirely possible t o  predict the surface absorptivity. 

For this investigation, the tank energy balance was made twice using both 

of the extremum values for dane absorptivity. 

value i n  the thermal modeling was based upon both the cunparison of ana- 

l y t i ca l  t e s t  dome wall temperature differences and tank pressure rise rates. 

The value of both predicted and experimental temperature differences is 

shown on Figure 2-2. 

the value of 0.05 are  entirely too low and that  th i s  value of surface 

absorptivity i s  incorrect. On the other hand, the predicted temperature 

difference values obtained with an absorptivity value of 0.55 are somewhst 

too high. 

An investigation i s  now under way t o  detemine the effective degradation 

of vapor deposited aluminum absorptivity with weathering. 

should provide 8n answer t o  the question of proper dwe surface conditions 

t o  m e  i n  the thermal modeling of the tank. 

The acceptability of either 

It is  readily apparent that.thevalues obtained with 

It appears that the value is sanewhere between the two extremes. 

This investigation 

One other modeling problem i s  apparent frw a review of the exper- 

imental data i n  Figure 2-2. The temperature difference decay just  prior 

t o  and immediately a f te r  the s t a r t  of the closed tank pressure r i s e  t e s t  

(17140 seconds) i s  not properly predicted by either set  of analytical data. 

The assumption was made i n  the thermal model for problem i n i t i a l  conditions 

that  the temperature gradient across the tank dune wall was a straight 

l ine as shown i n  Figure 2-3. Due t o  the very rapid chilldown of the tank 

due t o  a tank venting blowdown and the low conductivity of the  tank wall, 

t h i s  assumption may have been incorrect. It appears that  the i n i t i a l  w a l l  

gradient may have been more nearly shaped l ike  the approximation of Figure 

2-3. A gradient of t h i s  type would explain the reason for the difference 

10 
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i n  slope of the temperature difference decay l ine  between analysis and test. 

This si tuation i s  also under investigation and w i l l  be reported later. 

The results of the analysis for heating rates thra;rgh the forward 

bulkhead are  shown i n  Figure 2-4. 

ca l  side wall sections i s  shown as a basis of comparison for  the predicted 

magnitude of the forward dane heating. 

existed, the dome heating would have been almost insignificant. 

i n  Figure 2-4, for absorptivities investigated, the dome heat flux i s  always 

less than the cylindrical section, although the dome area exceeds the dry 

side wall in  t h i s  case by 18 per cent, Test data points from Reference 4 

on Figure 2-4 correlate reasonably well with the cylindrical section pre- 

diction. .Test data in  the dome area suggests the absorptivity value i s  

higher than .O5, but as indicated earlier a value of CY equal .20 may f i t  

the t e s t  data. 

forward bulkhead heating rates becane a more significant contribution 

t o  ullage heating. 

it appears ullage heating for  the closed tank experiment should t o t a l  

about 49,000 BTU. 

41,000 and 61,000 BTU for ullage heating. 

Figure 2-4 and the inabili ty t o  match the temperature differences i n  t h i s  

area with CY = .O5 suggest a value of absorptivity near 0.20 may be more 

appropriate. 

The predicted heat flux for the cylindri- 

If the absorptivity of .05 had 

As indicated 

As the absorptivity on the forward dome increases, the 

From the pressure r i s e  analysis t o  be discussed later,  

The absorptivities of 0.05 and 0.55 gave respectively 

The negative heating flux i n  

The heating rates t o  the liquid and gas are  calculated in  the thermo- 

dynamic program REFOIVER. 

a function of axial  location and the program calculates liquid and ullage 

heating. 

The heating rates are input t o  the program as 

These heating rates are  presented i n  Figure 2-5 for the ullage 

11 
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where a canparison can be made wtth the results reported i n  Reference 4. 

There, two approaches were used in an evaluation of t he  heating rates, one 

an evaluation of heating rates through changes i n  ullage f l u i d  properties, 

and the other a calculation using measured wall temperature differences 

and an assumed thennal conductivity. The authors of Reference 4 prefer 

t he i r  results on change of f l u i d  properties since it is in agreement with 

Continuous vent f low,  also the t h e m 1  conductivity is most likely higher 

than used in  the temperature difference method. The comparison of these 

two methods with Convair predicted results suggests bet ter  agreement for 

the ullage during the fourth orbit with the wall temperature difference 

method. 

ation must, be resolved. "his la t te r  task w i l l  be undertaken next quarter. 

Alternatively, the disagreement with the fluid properties evab- 

For liquid heating, predicted results are compared with t e s t  data i n  

Figure 2-6. 

determined frw the w a l l  temperature difference method. Investigators i n  

Reference 5 report a heat input of 79,000 BTU/hr t o  the liquid using wall 

temperature difference and 69,000 BTU/hr plus 47,000 BTU/hr boil-off using 

f lu id  properties. 

tank, a value somewhat lower than the other investigators. 

between predicted values and fluxes from the AS-203 data are s t i l l  being 

reviewed. 

2.2.2 PRIESSURE RISE RATE. 

analysis i s  manifested i n  the abi l i ty  t o  predict the pressure r i s e  rate.  

Other than  defining hot spots and maximum temperatures, the thermal 

Predicted results compare more favorably wi th  the heat fluxes 

The predicted value i s  only 52,000 BTU/hr input t o  the 

"he differences 

The significance of a valid model for  thermal 

analysis i s  only required t o  adequately model the 

of the fluid. Although it is  recognized that  the 

15 
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input requires additional study, some results a re  presently available on 

the preseure r i s e  r a t e  prediction. 

Although program REPORT= has the capacity for analysis of a 10 node 

problem permitting s t ra t i f icat ion i n  the ullage because of different 

axial  heating rates, the use of a single node problem with one l iqpid 

and one ullage node has been f m d  t o  give similar results t o  the m u l t i -  

node configuration for  pressure r i s e  rate.  

the single node analysis has been used. 

In the interest  of econcxuy, 

For the two heat flux calculations discussed earlier,  i .e. dome 

absorptivities of 0.05 and 0.55, the heat flux tables a re  exactly the 

same for a l l  stations below the dwe. 

for the two cases, the l iquid thermodynamic s ta tes  determined with REEORTEI 

are equal. 

entire simulation with no evaporation occurring. 

agreement with previous investigators. 

It i s  not unexpected therefore that 

The UQuid in both instances remained subcooled during the 

This i s  not entirely in 

The differences i n  ullage heating resulted i n  different pressure r i s e  

These rates are compared in Figure 2-7 with the pressure history rates. 

of the AS-203 f l ight  fo r  the period of the closed tank experiment. 

cases indeed bracket the t e s t  data, It remains t o  determine whether boil- 

off d id  occur; if so, the low absorptivity prediction would be increased 

These 

toward the f l i g h t  data. 

liquid, 5.7OR below the saturated conditions for  f ina l  t e s t  data pressure, 

indicates increasing liquid heat flux two-fold would not result  i n  a 

prediction of boil-off with program REFORTBR. 

tribution from evaporation with th i s  model is unacceptable and the con- 

tribution of boil-off must be added outside the program. 

It i s  noteworthy that  the degree of subcooled 

Thus, t o  expect a con- 

This difficulty 

16 
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with boil-off contribution h a s  been experienced elsewhere i n  models which 

f a i l  t o  adequately model st rat i f icat ion.  

boil-off contribution are t o  be a subject of further investigation when 

more v a l i d  heat flux data has been obtained. Implied differences between 

the f lu id  properties or sensible heating evaluation of the  ullage and t h e  

ullage energy balance i n  Rg#IRTER w i l l  be reviewed. 

2.3 DLPR(ESGURIZATI0I AND BOILING ANALYSIS 

Liquid level rise caused by boiling constitutes a potential  problem area 

for  space vehicles ut i l iz ing cryogens. 

boiling i n  a tank increases due t o  the presence of vapor bubbles entrained 

in t h e  liquid, 

gravity environment due t o  a reduction i n  bubble r i s e  velocity because 

of a decreased buoyancy force which resul ts  i n  longer bubble residence 

times i n  the liquid. 

pressure rel ief  venting of a tank containing saturated liquid where large 

quantities of vapor can be generated by boi l ing  caused by a pressure 

reduct ion. 

The ullage modeling and t h e  

The level of a liquid cryogen 

The amount of vapor entrainment i s  enhanced i n  a low- 

The r i s e  problem i s  particularly serious during 

A prediction of liquid level r ise due t o  boiling would be desirable 

i n  order t o  prevent liquid boilover during a venting operation. 

it would be desirable t o  predict the maximum venting r a t e  tha t  can be 

tolerated during a rapid blowdown of a cryogenic tank. 

i s  no quantitative data of level  rise during venting i n  a low-gravity 

environment. 

pressure rel ief  venting depends on the avai labi l i ty  of such information. 

However, before experiments a re  conducted, it is desirable t o  have 

analytical  tools available t o  predict liquid level  rise during a venting 

Also, 

To date, there 

A successful design of a cryogenic tank incorporating 
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operation. The developnent of these tools i s  the purpose of t h i s  study. 

A purely analytical  approach to  the problem of liquid level r ise  w i l l  

be employed here. 

and heat t r ans fe r .  

gations of liquid level r i s e  ( R e f .  6, 7, 8). 

certain unknowns are  rather d i f f icu l t  t o  describe analytically. 

involve determining the amount of energy tha t  goes in to  vapor production 

and quantity of vapor that  remains entrained i n  the liquid during a venting 

operation. The first  unknown involves describing bubble nucleation, 

growth, and departure a t  a solid surface and liquid-vapor interface, while 

the second entai ls  describing the motion, interaction, and coalescence of 

individual bubbles i n  a liquid. 

termining the relat ive importance of nucleation a t  a solid surface, liquid- 

vapor interface, and impurities i n  the liquid bulk. The above problems 

which previous investigations have neglected or simplified a re  being ex- 

amined i n  t h i s  study. 

The study w i l l  employ t h e  basic equations of motion 

A t  the present time, there are f e w  analytical  investi- 

This is  probably because 

These 

Also, there a re  problems related t o  de- 

This  phase of the  study i s  concerned wi th  indicating the possible 

magnitude of liquid rise under certain simplifying assumptions. 

are derived t o  determine the quantity of liquid mass evaporated allowing 

for  saturation pressure change, liquid superheat, and wall heat transfer.  

From the evaporated mas8, equations a re  developed t o  predict liquid level  

rise i n  terms of an unknown parameter. 

amount of vapor tha t  remains entrained i n  the liquid and i s  related t o  

t h e  nucleation process, motion and interaction of bubbles. 

the magnitude of entrained vapor, significant liquid level r i s e  i s  pre- 

dicted. 

Equations 

This parameter describes the  

Depending on 

Future analyses w i l l  be directed towards predicting the quantity 

I 
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of entrained vapor which w l l l  comprise examination of bubble nucleation 

and subsequent motion i n  the  liquid. 

2.3.1 ANALYTICAL MODEL. 

i n i t i a l l y  filled with liquid t o  a height ho. 

saturated and set t led i n  the  bottom of tank during t h e  course of a venting 

operation i n  which the saturation pressure decreases. 

mass of saturated liquid by evaporation and subsequent liquid r i s e  due t o  

vapor entrainment are t o  be determined for different levels of pressure 

reduction. Also, estimates of the effects of liquid superheat and wall 

heat transfer a re  t o  be determined. 

2.3.1.1 Level Rise Due To Pressure Reduction. 

mass evaporated by boiling due t o  a saturation pressure reduction can be 

Consider a cylindrical tank of height H tha t  is 

The ent i re  liquid remain6 

The reduction I n  

The quantity of liquid 

a saturated l i q u i d  given as: 

dT 

determined from an e n e r b  balance on 

mcS 
-Mm = 

where heat transfer, liquid superheal, and variable propert-es have been 

neglected. 

yields : 

Integrating Equation 1 between i n i t i a l  and f i n a l  states 

f cs - = exp (-  AT^) m 

mO 

If  a fraction b of vapor generated over the reduction i n  pressure 

remains entrained I n  a settled liquid, the increase i n  liquid height due 

t o  bubble displacement i s  given as: 
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(4) 

where @has been assumed t o  remain constant over the duration of a venting 

operation. 

nucleation process, location of nucleation, and bubble motion i n  the 

liquid. Future analyses will examine these interactions. For now, how- 

ever, @ w i l l  be assumed t o  represent some average quantity of vapor en- 

trained in the liquid during the t i m e  i n t e rva l  of a vent cycle. 

summation of Equations 3 and 4, the liquid height corresponding t o  a 

change in saturation pressure and vapor entrainment is given by: 

This is not exactly true due t o  the unsteady nature of the 

From the 

where an average slope of the saturated liquid-vapor pressure curve has 

been employed. 

Calculations which have been performed ut i l iz ing Equation 5 are 

presented in Figure 2-8. 

over a pressure range of 10-50 psia and are given as: 

Average liquid hydrogen properties were used 

BTU Cs = 2.5 - 
lbmoR 

A =  188- BTU 
Ibm 
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It is noted in Figure 2-8 that potentially serious l iquid level r ise 

problems can occur for  high pressure reductions, depending on the quantity 

of entrained vapor. For example, for a pressure reduction of 26 psi  where 

60 per cent of the vapor generated remains entrained, the l i q u i d  level rise 

would be twice the i n i t i a l  f i l l  level. 

To determine the maximum allowable pressure reduction for  venting a 

tank of height H i n i t i a l ly  filled t o  a levelho,  without l iQuid reaching 

the top of the tank, EQuation 5 is solved for  PP- corresponding t o  h = H 

t o  yield 

Calculated results using muation 6 with the previously given LE2 proper- 

t ies  are  presented in Figure 2-9. This figure shows that the magnitude of 

pressure rel ief  during a one cycle blowdown can be very small depending on 

the f i l l  level and quantity of entrained vapor. 

multiple vent cycles would have t o  be employed t o  reach a required pressure 

reduction i f  Bwere near one. 

It is not unlikely that 

It should be noted here that two conservative assumptions are made 

in the  design of vehicles uti l izing pressure relief venting of a cryogenic 

container. These are: 

1. That a l l  the heat input into the tank i s  absorbed in vapor 

generat ion 

That a l l  the vapor generated remains entrained in the liquid.  2. 

1 
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Frw the analysis of the S-IVB vent-downs during the AS-203 f l ight  (Ref. l), 

it is believed that both of these assumptions are  overly conservative and 

place severe restrictions on venting a propellant tank as can be seen fran 

the B = 1 curves of Figures 2-8 and 2-9. 

both of these assumptions t o  predict the i r  quantitative importance. 

2.3.1.2 Effects of Liquid Superheat. Before boiling occursI t he  liquid 

temperature must increase above the saturation temperature due t o  surface 

tension effects. The degree of superheat required is dependent on liquid 

properties, operating pressure, and gewetry of the nucleation s i te .  To 

account for  the energy which can be absorbed in liquid superheat, Equation 1 

is modified as: 

Future analyses will examine 

Dividing through by m and integrating Eqyation 7 between initial and f ina l  

s ta tes  corresponding t o  a saturation temperature change yields for  the 

f i n a l  liquid mass 

- -  5 - exp [ -h cs (ATs - inr,)] 
mO 

where $ E mt/m is assumed constant. 

heat reduces the amount of evaporation since part of the energy released 

due t o  a saturation pressure reduction i s  absorbed i n  superheating the 

liquid. 

due t o  pressure reduction with superheat effects included i s  given as: 

muation 8 relates how liquid super- 

Similar t o  the derivation of Equation 5, the l iquid level r i s e  

25 



(9) 

To determine t h e  magnitude of superheat that  a l iquid can sustain 

beCore boillng, the following expression developed i n  Reference 9 fo r  a 

bubble growing i n  a solid cavity w i l l  be used 

U s i n g  saturated 1112 properties corresponding t o  a pressure of one atmosphere 

and a cavity radius of 10 

amount of &perheat i s  determined t o  be 0.116~~. 

with the values measured in fieference 10. Using th i s  value of superheat 

in Equation 9 and assuming a l l  the liquid is superheated ( A  = 1) results 

i n  a u per cent reduction in level rise for a  OR reduction i n  saturation 

temperature and )9 = 0.6. 

required t o  in i t i a t e  boiling of IB2 in Reference 11 which employed a di f fe ren t  

surface material and preparation than that of Reference 10. 

that  surface effects can be important. 

i s  attainable for Ui2 and nucleation a t  a solid surface i s  the main con- 

tr ibutor t o  vapor production, then, superheat effects can becwe very im- 

portant as  a factor i n  delaying and reducing IX2 level rise. 

2 .3 .1 .3  

of a cryogenic tank containing saturated liquid is another mechanism for 

vapor generation. 

-4 in.which is  typical fo r  most surfaces, the 

This result  i s  consistent 

It should be noted that a 2.5OR superheat was 

!Chis indicates 

If this  higher value of superheat 

Influence of Wall H e a t  Transfer. H e a t  transfer thraugh the walls 

To account for  -11 heat transfer, t he  energy equation 
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for  a saturated liquid i s  given as: 

6% + Nm = - mCs dT 

Dividing through by m, approximating 

 om the  we  of Equation 1, and integrating Equation 11 between i n i t i a l  

and f i n a l  states for  constant heat transfer resul ts  in: 

Equation 13 shows how wall heat transfer results i n  increased vapor 

production. 

sure reduction with constant wall heat transfer i s  given as: 

As derived previously, the liquid level r i s e  due t o  pres- 

Using the following values in Equation 14 

t h i r d  orbit, first vent-dawn of the S-IVB 

f l igh t  : 

27 
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= 16,300 lbm 
mO 

AS h14500 B'lW 

results in a 11 per cent increase in level rise due t o  wall heat transfer 

fo r  a change in saturation temperature of l0R and fi  = 0.6. For heating 

rates near the value used here and larger saturation temperature changes, 

the influence of wall heat transfer on level rise becanes negligible as 

canpared t o  pressure reductions by venting. 

2.3.1.4 Consideration of Both Buperheat and Wall Heat Transfer. Frau the 

analysis presented in the previous two sections, the influence on a satu- 

rated liquid of both l iqu id  superheat and wall heat transfer can be 

accounted for by consideration of the following energy balance: 

Dividing through by m, using the approximation given i n  IPQuation 12, and 

integrating between i n i t i a l  and f i n a l  states yields: 

EQuation l6 indicates how liquid superheat and wall heat transfer oppose 

each other  i n  terns of vapor production. 

saturation temperature change wlth l i q u i d  superheat and wall heat trans- 

fer included is  determined t o  be 

The l i q u i d  level rise due t o  
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Substituting the values used for superheat and wall heat transfer used In  

Sections 2.3.1.2 and 2.3.1.3 results i n  a 1 per cent reduction i n  L€12 

level rise for a saturation temperature change of l0R.  

t o  t h e  12 per cent reduction due t o  superheat and 11 per cent increase 

caused by wall heat transfer. 

the effects of superheat and wall heat transfer on LH2 level r i s e  are  

negligible cunpared t o  saturation pressure reductions. 

2.3.2 FUI'URE ANALYSIS. 

the quantity of entrained vapor -6 left  as an unknown parameter and has 

been assumed t o  remain constant with time during t h e  period of a venting 

cycle. To remove these shortcomings, further study of the basic phenomena 

involved i n  a venting process will continue. These phenomena include 

bubble nucleation, growth, rise, interaction, and coalescence. Also, 

the re lat ive importance of nucleation a t  a surface, liquid-vapor inter- 

face, and i n  the liquid bulk will be examined. 

This corresponds 

Therefore, from the results determined here, 

I n  the previous analyses on liquid level r ise ,  

After the above time-dependent bubble phenomena have been resolved, 

the unsteady nature of liquid level r i s e  can be examined. 

termination of bubble s ize  and spatial  d i s t r ibu t ions  as  a function of 

time during a vent-down, the rate  of liquid r i s e  can be determined for 

various vent flow rates. 

&om the de- 

Maximum vent ra te  and quantity of vented vapor 
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can then be determined before bollover occurs for various f i l l  levels and 

gravity values. 

2.4 PROPELLANT SID6HIE AEALYSIS 

Propellant sloshing analyses during t h e  second quarter have been concen- 

trated on a theoretical analysis of drop tower scale model slosh testing 

(Ref. 12) 

AS-203 f l ight  results. 

coast phase sloah simulation i s  being m o d i f i e d  t o  simulate the S-IVB-203 

att i tude control system. 

it enables a direct  evaluation of the propellant slosh theoretical 

solution. 

Work i s  also continuing on the theoretical correlation with 

In the l a t t e r  area the s ix  degree of f'reedom 

The drop tower slosh data i s  valuable i n  that 

A dig i ta l  computer p r o g r a m  has been s e t  up t o  simulate the drop 

tower propellant sloshing dynamics. The simulation uses the pendulum 

analogy t o  duplicate the sloshing dynamics, provision i s  included for 

three slosh modes. 

matical model are shown i n  Figure 2-10. 

slosh parameters a s  a function of the propellsnt level showing the 

sloshing mass and pendulum length. 

the same as that employed i n  the actual t e s t .  

i n  a one "g" enviroment, then the acceleration will be reduced t o  a 

low level. 

velocity and acceleration. 

amplification factor, effective propellant damping, and slosh period 

as a function of Bond number and Froude number. 

The pendulum analogy parameters and the basic mathe- 

Figure 2-11 i l lus t ra tes  the 

The analytical procedure will be 

Sloshing will be induced 

Data will be obtained on propellant slosh wave amplitude, 

This data will enable detennination of t h e  

Baffle damping i s  simulated in  the  form of energy dissipation as an 

Tbis technique has proved adequate for instantaneous function of t i m e .  
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Slosh 

Pendulum length used in 
the pendulum analogy far 
the ith mode sloshing. 

Sloshing propellant mass 
used as the propellant 
mass in the pendulum analogy 
for ith mode sloshing. 

Pendulum displacement angle 
for ith mode sloshing. 

Analogy Parameters. 

analysis of Centaur low "g" slosh conditions. 

however for the no baffle case, since conventional theory predicts only 

wall wiping damping, in the absence of an anti-slosh device. 

i8 adequate for low amplitude slosh but inadequate for large amplitudes. 

Urge amplitude slosh gains additional energy losses frm turbulence, 

mixing, etc. 

configuration is not sufficient to correlate with observed test results 

then the nonlinear damping coefficient w i l l  be parameterized to fit the 

observed test data. 

Difficulty is anticipated 

This damping, 

If an analytical damping expression for the clean tank 

In summary it is believed that the drop tower test data available 

presents the best opportunity for correlation of the theoretical analysis 
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with test results. 

model inaccuracies and point out problem areas before simulating the 

AB-203 flight. 

This comparison will serve to point out the slosh 
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3.1 AHPICIPATED PRO- AREAS 

A t  the present time, there are  no technical problems which are  impeding 

the progress of the study. 

with the points of progress indicated for t he  six task descriptions. 

Work reported herein covers work cwpleted during the second quarterly 

work period. 

delayed u n t i l  November. 

The study schedule is shown in Figure 3-1 

Ini t ia t ion of t h e  propellant transfer analysis w l l lbe  

3.2 mrmnuz WORK PLAN 
During the next monthly reporting period, the cmparisons w l l l  be made 

between the two analytical models available for repressurization analysis. 

Thermal properties for theevaluation of energy input thrcugh the forward 

bulkhead of the AS-203 f l ight  w i l l  be defined and the f ina l  canprisons 

for  predicted heat fluxes with test data w i l l  be ccmpleted. The evalu- 

ation of pressure r i s e  ra te  will be continued. 

liquid level r i s e  during depreseurization w i l l  be programmed and a 

parametric study of variables w i l l  be made. The importance of bubble 

phenomena will be defined and the results w l l l  be used t o  improve the 

analytical model. 

drop tower data which models the  AS-203 f l ight .  

The analytical m o d e l  for 

The dynamics of sloshing study w l l l  continue for the 
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